Wax it to Win it: a Golden Algorithm for Team Canada

Introduction and Background

I'm Sitka, a 14-year-old cross-country ski racer in Whitehorse, Yukon. Last year for the CWSF, I tested various fluoro-free waxes to race faster – which led me to a complex world of factors that influence ski glide. Then I learned that even Team Canada still relies on time-consuming trial-and-error for wax selection. I thought that new AI technology could be the needed new solution.

Procedure

- 1. Learn to code algorithms through mentorship and online university courses
- 2. Build a machine-learning (ML) algorithm into which I can input wax testing data
- 3. Build a large pool of useful and accurate data through weekly wax tests at my local ski club
- 4. Separate data into two randomized pools to (a) train the algorithm, and (b) test its accuracy
- 5. Input test data to the newly created prototype and **test the predictive value** of the algorithm
- 6. **Refine the algorithm** with data collected by wax technicians across Canada

Results and Observations

Last year, I increased my ski glide by 7.29% by selecting higher-quality waxes matched to the current snow temperature. In Phase 2, I am also incorporating relative humidity, time since last snowfall, and snow type (including artificial or natural) to further refine wax selection.

Conclusion

An algorithm that efficiently and precisely predicts optimum wax for any given set of conditions would give Team Canada a competitive edge on the world stage, in time for the 2026 Olympics.

Acknowledgements

Despite living in Canada's remote North, I've been lucky to access incredible mentors whom I recognize in my references, including Team Canada's lead wax technician, Alain Masson.

References

Blount, R., & Tribune, S. (February 10, 2024). "When world-class cross-country skiing meets climate change". *Star Tribune*. https://m.startribune.com/world-cup-cross-country-skiing-jessie-diggins-climate-change-minneapolis/600342589/

Cross-country Skiing Planet. (September 27, 2018). "How ski wax works: A quick and simple guide - cross-country skiing planet". *Cross-country Skiing Planet*.

https://crosscountryskiingplanet.com/how-ski-wax-works-a-quick-and-simple-guide/

Freeman, T. (2002). *The Physics of Skiing and Wax*. (2002). http://ffden-2.phys.uaf.edu/211 fall2002.web.dir/Tyler Freeman/index.html

FasterSkier. (January 16, 2022). "The Devon Kershaw Show: Inside Olympic Skis and Waxing with Zach Caldwell". *FasterSkier.com*. https://fasterskier.com/2022/01/the-devon-kershaw-show-inside-olympic-skis-and-waxing-with-zach-caldwell/

Nishikawa, Graham (2024). (Former Paralympic Nordic Ski Guide, and current Team Yukon ski coach). Ongoing mentorship.

Katz, C. (May 2, 2014). "Ski Wax Chemicals can build up in blood". *Scientific American*. https://www.scientificamerican.com/article/ski-wax-chemicals-buildup-blood/

Khan Academy. "Static and kinetic friction example". (n. d.). [Video]. *Khan Academy*. https://www.khanacademy.org/science/physics/forces-newtons-laws/inclined-planes-friction/v/static-and-kinetic-friction-

example#:~:text=Static%20friction%20is%20the%20force,and%20opposite%20to%20your%20push

Libbrecht, K. (December 8, 2023). "The enigmatic snowflake – Physics World". *Physics World*. https://physicsworld.com/a/the-enigmatic-snowflake/

Masson, Alain (2024). (Former Olympian and currently Lead Wax Technician for Team Canada). Ongoing mentorship, including experiment design.

Protect our Winters (POW). (April 10, 2024). Protect Our Winters.

https://protectourwinters.org/

Scheve, I. (November 17, 2020). "Inside the Factory: All you need to know about grinds and grinding". *FasterSkier.com*. https://fasterskier.com/2020/11/inside-the-factory-all-you-need-to-know-about-grinds-and-grinding/

Stanford University. (n.d.) Supervised Machine Learning: Regression and Classification.

Coursera. https://www.coursera.org/learn/machine-learning/home/week/1

Tory, Steven (2024). Systems Technician School District 59. Ongoing mentorship. University of Michigan. (n.d.). *Python Basics*. Coursera.

https://www.coursera.org/learn/python-basics/home/module/1

Yukon-Stikine Science Fair Society (2024). Ongoing mentorship from Ryan Sikkes and Evan Howells.

Joubert, Erika (2024). Teacher, CSSC Mercier. Ongoing mentorship.