DeviceABLE: A Novel Hands-Free Computing App for People with Disabilities (see attached project photos)

Unfortunately, for millions of people with disabilities, *hands-free computing* is their *only option*, but the current technologies have many drawbacks: very expensive, less functional, bulky /inconvenient gears, less accurate etc. That is why I created DeviceABLE that not only solves all these issues, but also provides many more innovative features. DeviceABLE is a novel app – the only comprehensive app in the market for full computer usage; and is also free, hands-free, and hardware-free. It's also highly accurate, user-friendly, and has many useful customizable features.

For my innovation, I used Python, computer vision, and 15 libraries. My app has three softwares: 1.) I made a *virtual mouse* that follows your head movements, by capturing video using OpenCV, detecting facial landmarks using MediaPipe, and utilizing the PnP algorithm for cursor movement. The mouse *left/right clicks* and *dragging/scrolling* works by closing/opening your eyes/mouth respectively, for 2-seconds (utilizing EAR and MAR algorithm). 2.) I built a customizable *on-screen keyboard* which types when you hover on a key for 2-seconds (utilizing PyAutoGUI). 3.) I also created a *voice-assistant* that has 30 commands to enhance functionality. Finally, I used threading for faster app speeds, then used PyInstaller to convert all my app's scripts to .exe. Then, I created an installer using Inno setup for other computers to run my app.

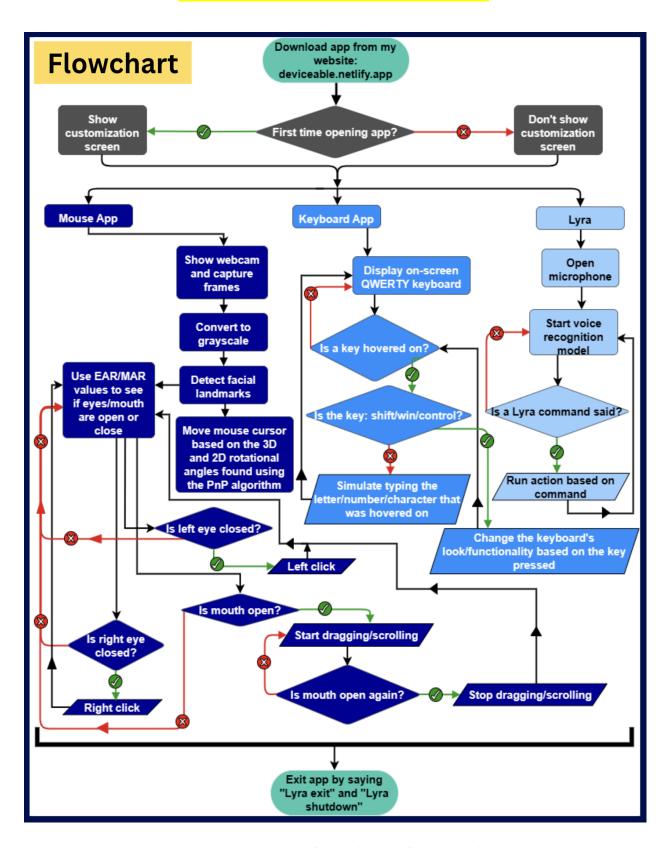
I tested my app on a diverse group, including two people with disabilities; and found that my app's average accuracy was 91%. By conducting two *statistical t-tests*, I found that my result was highly statistically-significant with 99% confidence. I also tested and compared my app with six other apps and found that DeviceABLE is the best – there is no other app like mine in the market. My app also received 15 excellent feedback from five AT professionals and testers from Technology for Living, Neil Squire, and Spinal Cord Injury BC. 80% of disabled people in developing countries don't have access to assistive technology, so my app will be very helpful.

Works Cited

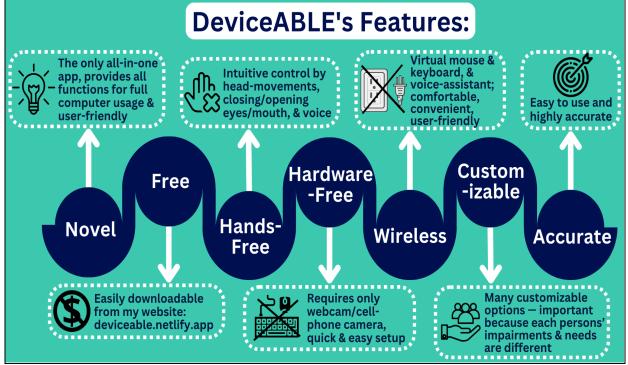
- 1. World Health Organization. (2023, March 7). Disability and Health. WHO. Retrieved from https://www.who.int/news-room/fact-sheets/detail/disability-and-health
- 2. University of Melbourne. (2016, July 1). Motor Impairments. Accessibility. Retrieved from https://www.unimelb.edu.au/accessibility/users/motor
- 3. Moist, H., David, H., Smith, A. (2013). Technology and Disability: A Help or a Hindrance? Retrieved from https://macsphere.mcmaster.ca/bitstream/11375/14401/1/fulltext.pdf
- 4. Šumak, B., Špindler, M., Debeljak, M., Heričko, M., & Pušnik, M. (2019). An empirical evaluation of a hands-free computer interaction for users with motor disabilities. Journal of Biomedical Informatics, 96, 103249. Retrieved from https://doi.org/10.1016/j.jbi.2019.103249
- DO-IT. Disabilities, Opportunities, Internetworking, and Technology. Working Together:
 Computers and People with Mobility Impairments. (2012). University of Washington. Retrieved from

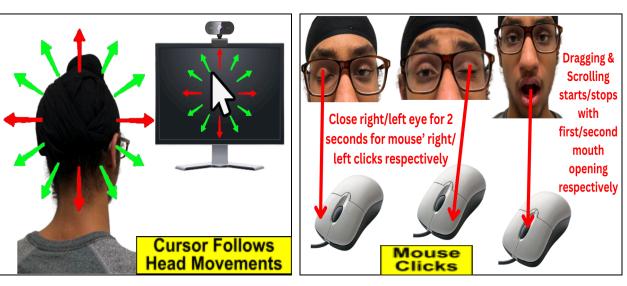
https://www.washington.edu/doit/working-together-computers-and-people-mobility-impairments

- 6. TetraLife Products. TetraMouse Compare. (n.d.). Retrieved from https://tetramouse.com/compare.html
- 7. Alsop, T. (2022, July 27). How Many People Have Access to a Computer 2018. Statista. Retrieved from

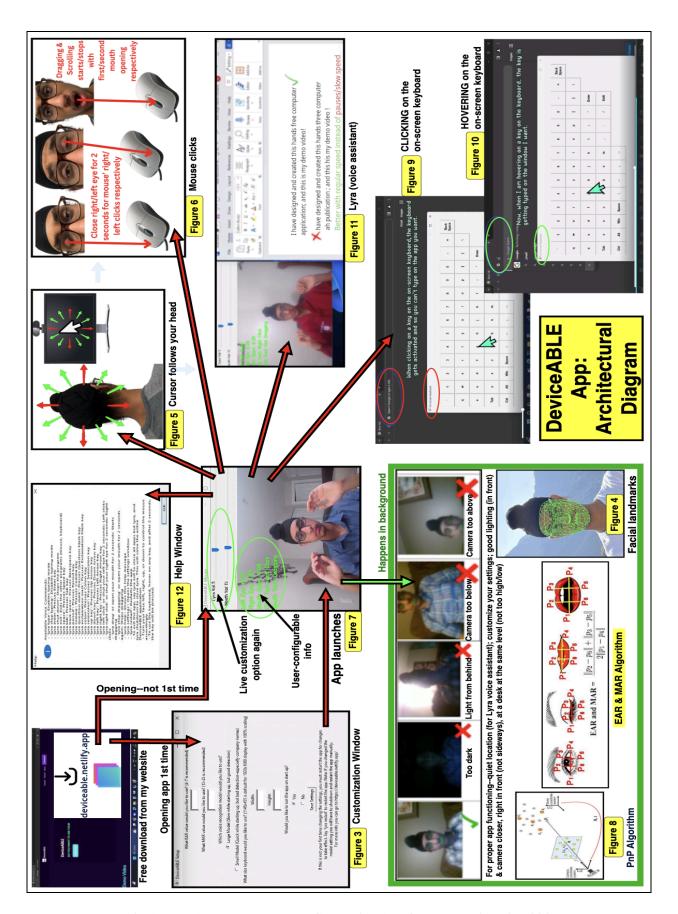

https://www.statista.com/statistics/748551/worldwide-households-with-computer/

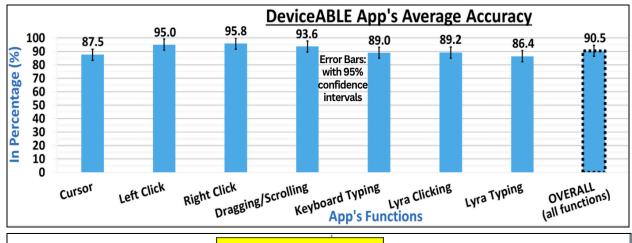
- 8. Clickatell. How Hands-Free Computing Is Shaping the Future. (n.d.). Retrieved from https://www.clickatell.com/articles/technology/hands-free-computing/
- 9. United Nations. (2010). Factsheet on Persons with Disabilities. United Nations Enable. Retrieved from


https://www.un.org/development/desa/disabilities/resources/factsheet-on-persons-%20with-disabilities.html


- 10. Mauckc, R. (n.d.). Mauckc/Mouth-Open: Detecting When a Human's Mouth Is Open. GitHub. Retrieved from https://github.com/mauckc/mouth-open
- 11. Soukupova, T., & Cech, J. (n.d.). Real-Time Eye Blink Detection Using Facial Landmarks.
 Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering,
 Czech Technical University in Prague. Retrieved from
 http://vision.fe.unilj.si/cvww2016/proceedings/papers/05.pdf
- 12. Mallick, S. (2016, September 26). Head Pose Estimation using OpenCV and Dlib | LearnOpenCV #. LearnOpenCV. Retrieved from https://learnopencv.com/head-pose-estimation-using-opencv-and-dlib/
- 13. Khalid, I. A. (2021, September 13). Head Pose Estimation using Python. Medium. Retrieved from https://towardsdatascience.com/head-pose-estimation-using-python-d165d3541600

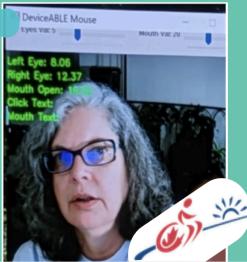
PROJECT PHOTOS





DeviceABLE: A Novel Hands-Free Computing App for People with Disabilities By: Jora Singh Nahal Page # 6 of 11

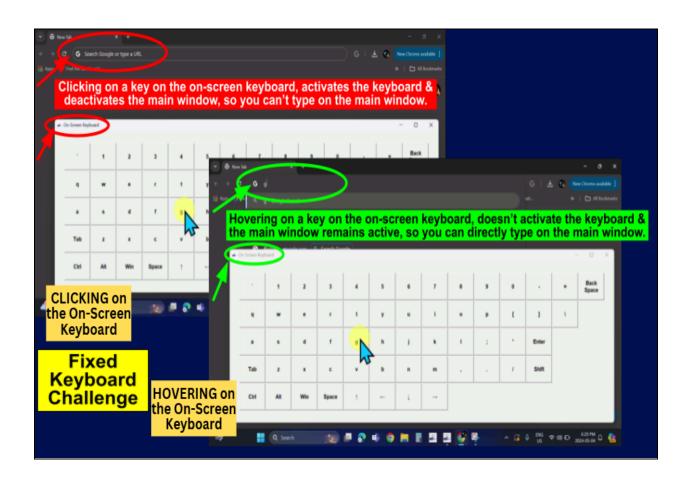
		Average Accuracy	Group 1	Group :	Group 2
	Mean	90.5	92.38	Mean 92.38	88.53
	Variance	42.2	50.34	Variance 50.34	33.61
	Observations	12	6	Observations 6	6
	Hypothesized Mean	85	n Difference 0	Hypothesized Mean Difference 0	
	df	11	10	df 10	
	t Stat	2.91	1.029	t Stat 1.029	
	P(T<=t) one-tail	0.0071	0.164	P(T<=t) one-tail 0.164	
	t Critical one-tail	1.80	1.812	t Critical one-tail 1.812	
	P(T<=t) two-tail	0.0142	0.328	P(T<=t) two-tail 0.328	
	t Critical two-tail	2.2010	2.228	t Critical two-tail 2.228	
	Η ₀ : μ :	≤ 85	$H_0: \mu_1 = \mu_2$	$H_0: \mu_1 = \mu_2$	
	$H_1:\mu$	> 85	$H_1: \mu_1 \neq \mu_2$	$H_1: \mu_1 \neq \mu_2$	
ther anne	were tested and compared	with Davico ARI F		t was found that The average accuracy of 12 different participants (

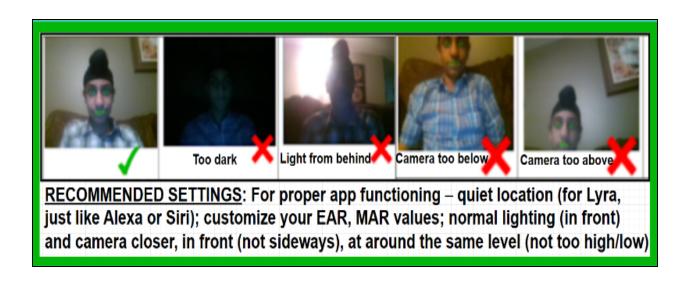

the mean accuracy of those six apps was 81%, so a higher benchmark of 85% was set as hypothesized mean. H_0 was 'rejected' because t stat = 2.91 > t critical = 1.80, and also p-value = $0.0071 < \alpha = 0.05$. Therefore, the result is statistically significant; and DeviceABLE app's average accuracy of 91% is significantly greater than 85%.

The average accuracy of 12 different participants (unpaired) was randomly divided into two equal groups (6 participants each) for comparison. H_0 was 'not rejected' because t stat = 1.03 < t critical = 2.23, and also p-value = $0.33 > \alpha = 0.05$, which means that both the groups were statistically significantly similar, so DeviceABLE app's average accuracy of 91% is statistically significant.

DeviceABLE Vs. Other Apps											
	Free	Functions			Operating System						
App's Name		Mouse (Cursor, Clicks)	On-Screen Keyboard		Windows	Linux	Mac OS	Accuracy			
DeviceABLE	✓	✓	✓	✓	✓	✓	In progress	C			
Google Gameface	✓	✓	\boxtimes	X	✓	\times	\boxtimes	O			
Eviacam	✓	✓	\boxtimes	X	✓	✓	\boxtimes	C			
Cephable	✓	Experimental Feature	\boxtimes	✓	✓	\times	✓	0			
Open Sesame	✓	Error, app didn't launch/run			✓	\times	\boxtimes				
Smyle Mouse	×	✓	\boxtimes	X	✓	X	\boxtimes	O			
Camera Mouse	✓	✓	\boxtimes	X	✓	\times	×	O			

Professional Feedback for DeviceABLE





- "What you have designed and created is futuristic, usable and noteworthy."
- "I love playing with your creation."
- "I am waiting to see how it is integrated into future products for everyone to use seamlessly during their day."
 - Vivian (Spinal Cord Injury BC)

- "Great eye tracking accuracy."
- "Providing this app for free is great because speech recognition apps can be \$400-\$800 and eye tracking apps can be \$1000+"
- "This app is an impressive early software."
- "Your app incorporates many useful computer accessibility features across different commercial software, into one software."
- "The help screen is a great feature for users."
- "This project is innovative and creative..."
- "It has the potential to meet various accessibility needs for different users."
 - Eric Chau, Occupational Therapist;
 - Jody Dickerson, Assistive Technology Specialist; Neil Squire Society

'Lyra right click' OR shut your right eye for 2-seconds: Right Mouse cursor follows your head movements, Just pan your To use the on-screen keyboard, just hover on any key for · 'Lyra stop dragging' OR open your mouth for 2-seconds 2-seconds, respectively. For dragging/scrolling: Open your mouth for 2-seconds to start dragging/scrolling, and then head in ANY direction (not just left, right, up, or down) to 'Lyra drag' OR open your mouth for 2-seconds: Starts Mouse left/right clicks; Close your left/right eye for open your mouth again for 2-seconds to stop 'Lyra search (query)': Performs a web search 'Lyra settings': Opens the settings window Lyra double click': Double clicks mouse Mouse and On-Screen Keyboard Usage: 'lyra undo': Performs undo operation 'Lyra help': Shows this Help window 'Lyra redo': Performs redo operation 2-seconds, the key will be pressed. 'Lyra restart': Restarts the app control the cursor accordingly. again: Stops dragging dragging/scrolling. clicks mouse dragging shows Lyra's 30 COMMANDS & Help Window: other help number of times you want to press back space key}', eg. 'lyra To press Enter key multiple times, say 'Lyra enter (number of To press Backspace key multiple times, say Lyra back space lyra exclamation mark! Presses Exclamation Mark key imes you want to press Enter key}', eg. 'Lyra enter 5') Lyra exit': Exits other programs (mouse, keyboard) lyra question mark: Presses Question Mark key Lyra stop typing': Disables typing mode Lyra back space': Presses Backspace key Lyra semicolon': Presses Semicolon key 'Lyra shut down': Shuts down Lyra Lyra comma': Presses Comma key Lyra type': Enables typing mode Lyra period": Presses Period key Lyra colon': Presses Colon key Lyra space': Presses Space key Lyra enter': Presses Enter key Lyra tab': Presses Tab key Available Voice Commands: oackspace 17") 물

To close entire DevieABLE app: First say 'Lyra exit' to close all

apps but lyra, and then say 'lyra shutdown' to close lyra too.

ŏ

Lyra mouse cursor': Brings mouse cursor to the center of the

Lyra right key': Presses Right Arrow key

Lyra down key': Presses Down Arrow key

Lyra up key': Presses Up Arrow key

Lyra left key: Presses Left Arrow key

'Lyra left click' OR shut your left eye for 2-seconds: Left clicks