Background and Project Aim

According to the CDC, over a third of U.S. adults reported not getting enough sleep and three out of every four teenagers don't get the recommended sleep. By reading studies on sleep, I learned that there are 6 main external factors within your room's sleeping environment that have a significant impact on your quality of sleep: temperature, humidity, air quality, blue light, ambient light, and ambient sound. My project goal was to create a smart device that helps improve sleep quality by analyzing your room's sleeping environment and providing actionable insights.

Procedure

I determined I would require the following components: an AHT20 module for temperature and humidity, a TCS34725 to measure lux and Melanopic lux, an LM393 sound module for ambient sound levels, and a PMS5003 for PM2.5 Air Quality Detection. To connect all of the components, I used an Arduino GIGA R1 WiFi and I programmed it in Arduino IDE. I used SquareLine Studio to design an intuitive user interface and connected the microcontroller to a GIGA Display Shield. I then designed a star-shaped casing in TinkerCAD and Bambu Studio. The 3D-printed housing includes a snap-on magnetic enclosure for easy access to the electronic components.

Results and Observations

I conducted both consistency testing and accuracy testing for each metric on The SmartSleeper. I compared The SmartSleeper's readings to readings of measuring devices known to be accurate. The sound module showed a standard deviation of 34.64%, which was the only metric exceeding 1%. On average, The SmartSleeper's readings demonstrated 99.09% accuracy.

Conclusion

The SmartSleeper can help people optimize a room's sleeping environment in real time.

This is important because a better sleep can change many lives by improving physical performance, mental health, cognitive function, immunity, digestion, and more.

References

Buonanno, G., Canale, L., Solomon, M., Smith, M., & Stabile, L. (2024). Effect of bedroom environment on sleep and physiological parameters for individuals with good sleep quality: A pilot study. *Building and Environment*, 265, 111994.

https://doi.org/10.1016/j.buildenv.2024.111994

Bush, O. (2024, November 4). *Sleep Statistics in Canada*. Made in CA. Retrieved January 23, 2025, from https://madeinca.ca/sleep-canada-statistics/

Caddick, Z. A., Gregory, K., Arsintescu, L., & Flynn-Evans, E. E. (2018). A review of the environmental parameters necessary for an optimal sleep environment. *Building and Environment*, 132, 11-20. https://doi.org/10.1016/j.buildenv.2018.01.020

Cao, T., Lian, Z., Ma, S., & Bao, J. (2021). Thermal comfort and sleep quality under temperature, relative humidity and illuminance in sleep environment. *Journal of Building Engineering*, 43, 102575. https://doi.org/10.1016/j.jobe.2021.102575

Jin, J. (2023, August 28). The best temperature for sleep according to specialists.

BetterUp. Retrieved January 10, 2025, from

https://www.betterup.com/blog/best-temperature-for-sleep

Lan, L., Tsuzuki, K., Liu, Y., & Lian, Z. (2017). Thermal environment and sleep quality: A review. *Energy and Buildings*, *149*, 101-113.

https://doi.org/10.1016/j.enbuild.2017.05.043

Li, S., Hu, S., Liu, R., Liang, S., He, M., & Sun, J. (2022). Effects of ambient temperatures on sleeping thermal comfort and respiratory immunity: A winter field study in college students. *Journal of Building Engineering*, *52*, 104375.

https://doi.org/10.1016/j.jobe.2022.104375

OpenAI. (2025). Optimize/fix this code: [prompt]. In *ChatGPT* (GPT 4.0 version) [Large language model]. https://chatqpt.com/

OpenAI. (2025). What is the optimum temperature, humidity, sound level for sleep [prompt]. In *ChatGPT* (version 4.0) [Large language model]. https://chatgpt.com/ Pacheco, D., & Rehman, A. (2024, March 8). *Humidity and Sleep*. Sleep Foundation. Retrieved January 10, 2025, from

https://www.sleepfoundation.org/bedroom-environment/humidity-and-sleep
Raj, A., Ruder, M., Rus, H. M., Gahan, L., O'Mullane, B., Danoff-Burg, S., & Raymann, R.
(2020). 1214 higher bedroom temperature associated with poorer sleep: Data from over 3.75 million nights. *Sleep*, 43(Supplement_1), A464.

https://doi.org/10.1093/sleep/zsaa056.1208

Seeber, S. (2024, July 21). What is the Best Humidity Level For Sleeping Comfortably? | Air & Energy of NWFL. Air and Energy of NWFL. Retrieved January 10, 2025, from https://airandenergynwfl.com/blog/best-humidity-level-for-sleeping
Söderby, K. (2024, June 11). Getting Started with the GIGA Display Shield. Arduino Docs. Retrieved January 30, 2025, from

https://docs.arduino.cc/tutorials/giga-display-shield/getting-started/

What's the Best Temperature for Sleep? (2021, November 16). Cleveland Clinic. Retrieved January 10, 2025, from

https://health.clevelandclinic.org/what-is-the-ideal-sleeping-temperature-for-my-bedroom

WHO global air quality guidelines: Particulate matter (PM_{2·5} and PM₁₀), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. (2021, September 22). World Health Organization. Retrieved April 28, 2025, from https://iris.who.int/handle/10665/345329
Oh, J. H., Yoo, H., Park, H. K., & Do, Y. R. (2015). Analysis of circadian properties and healthy levels of blue light from smartphones at night. *Scientific Reports*, *5*(1). https://doi.org/10.1038/srep11325

Brown, T. M., Brainard, G. C., Cajochen, C., Czeisler, C. A., Hanifin, J. P., Lockley, S. W., Lucas, R. J., Münch, M., O'Hagan, J. B., Peirson, S. N., Price, L. L. A., Roenneberg, T., Schlangen, L. J. M., Skene, D. J., Spitschan, M., Vetter, C., Zee, P. C., & Wright, K. P. (2022). Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults. *PLOS Biology*, *20*(3), e3001571. https://doi.org/10.1371/journal.pbio.3001571

Wang, J., Gueye-Ndiaye, S., Castro-Diehl, C., Bhaskar, S., Li, L., Tully, M., Rueschman, M., Owens, J., Gold, D. R., Chen, J., Phipatanakul, W., Adamkiewicz, G., & Redline, S. (2024). Associations between indoor fine particulate matter (PM2.5) and sleep-disordered breathing in an urban sample of school-aged children. *Sleep Health*.

https://doi.org/10.1016/j.sleh.2024.06.004