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I found inspiration during my Anatomy and Physiology class, learning about homeostasis, how 

systems regulate themselves under changing conditions. As I learned about the energy demands of 

AI data centers, I noticed that operators often lack visibility in how energy is wasted. EcoEyes 

represents my first step toward exploring adaptive, learning-based system to support more 

sustainable AI infrastructure. I built a prototype in Replit using AI-assisted prompts to create a 

simulation framework. Constraints included energy balance, fan power proportional to speed³, and 

Power Usage Effectiveness (PUE ≥ 1.0). Cooling was modeled through adjustments to fan speed 

within the simulation rather than through physical hardware. To reflect real-world uncertainty, 

Gaussian noise was added to temperature readings and fault injection was used to simulate 

disturbances. Over 30 randomized runs, EcoEyes used adapted to cooling behavior based on past 

outcomes rather than fixed thresholds. While a simple rule-based system could increase cooling 

when temperature rises at a certain rate, Q-learning, allows the system to learn which actions 

reduce overheating over time (Sutton & Barto, 2015). EcoEyes also used a lightweight spiking 

neural network to identify temperature changes. Fixed-rule control resulted in approximately 80 

overheating incidents, while EcoEyes maintained lower peak temperatures without any violations. 

PID control also avoided violations, but EcoEyes provided a larger safety margin, with 1% higher 

energy use. Overheating was evaluated based on violations of thermal constraints rather than a 

single absolute temperature value. Future work would explore using a Leaky Integrate-and-Fire 

spiking neural network for more robust temporal change detection, suitable for data centers 

because they can be implemented on existing monitoring systems and their integrate-and-threshold 

behavior reflects the slow, cumulative nature of server-rack heating (Gerstner, 2014).  
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I appreciate open-source resources like Replit, Python libraries such as NumPy, and International 

Energy Agency reports, which helped me develop, test, and validate EcoEyes. 
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